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The attractors in two-dimensional (2D) phase space of the strongly dissipative Hénon map are
reduced to those of an effectively 1D map. From the grammar for this effectively 1D map we can
generate all of the unstable periodic orbits, which are exactly consistent with those from the 2D
map obtained directly both with a Newton procedure and the techniques of Biham and Wenzel
[Phys. Rev. Lett. 63, 819 (1989)]. This idea provides a method to give a very precise and not too
cumbersome estimate of the characteristic quantities of strange attractors of strongly dissipative

systems.
experimentally and numerically.

PACS number(s): 05.45.4+b

I. INTRODUCTION

Dissipative nonlinear dynamical systems have received
a great deal of attention in the last thirty years. Some
of them possess very strong dissipation. Take the Hénon
map [1]

2
Znt1 =1 - az? + ya,

(1)

Yn+1 = bTyn.

as an example. In the equations, a and b are both pa-
rameters. The Jacobian of this map is

J= [;2‘”" ;] (2)

When the determinant |J| = b =1, it preserves the area
and thus imitates a conservative dynamical process. In
the extreme dissipative limit, b = 0, it reduces to the 1D
logistic map

Tpt1 =1-— uwi (3)
In the case of b << 1, the strong contraction of the area
may be thought to be due to the presence of very strong
dissipation. For these strongly dissipative systems, on
one hand, the strange attractors clearly indicate that the
maps are two dimensional. In Fig. 1 the strange attractor
of the Hénon map for a = 1.4 and b = 0.05 is shown, which
has a clear hook in the upper-left part of the solid line.
On the other hand, numerical and experimental investi-
gations have already shown that the periodic orbits of
some high-dimensional systems share universal features
with those of one-dimensional (1D) maps [2-9]. In 1988,
Gunaratne, Jensen, and Procaccia [2] claimed that for
maps of the annulus of the family
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It is also helpful to understand many observations on high-dimensional systems both

Onp1 = On + Q2+ f(6n) + bh(ry), mod 1, .
Fat1 = bh(ra) + F(6a) “)

there exists a value b, of b, such that for b < b. the
topology is identical to that of the 1D circle map at
least on numerical grounds. For some ordinary differ-
ential equations, it is found that the systematics of the
periodic windows can be represented by 1D maps rather
well (the Lorenz equations [3], the Duffing equations [4],
the forced Brusselator [5], the Rossler’s band [6], and
the double-diffusive convection system [7], etc.). The
most striking and detailed observation is obtained in the
Lorenz equations. For most of the parameters, the at-
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FIG. 1. The strange attractor of the Hénon map for (a,b)
= (1.4, 0.05). The heavy lines are the strange attractor. The
diamonds are the “primary” tangencies. The dashed line
connecting them divides the full attractor into two subsets
marked by 0 and 1.
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TABLE I. The kneading sequences and fractal dimensions for the Hénon map for different pa-
rameters. The last column lists the p values for the logistic map (3) for corresopnding kneading

sequences.

a b K, Dimension I

1.4 0.05 01000101000101000101000101010001 1.05 £+ 0.01 1.4715
1.7 0.01 010010000100101010001010 1.14 £ 0.03 1.70856

tractors on the proper 2D Poincare sections are almost
topologically equal to those of a 1D antisymmetrical map.
Experimentally, even though the Belousov-Zhabotinskii
reaction involves more than thirty chemical species, it
exhibits rather complex behavior that is modeled well by
1D maps [9]. These observations motivate our interest in
discussing the relation between these strongly dissipative
systems and their extreme dissipative counterparts. In
this paper, we take the Hénon map as an example. It is
found that the chaotic dynamics of the Hénon map (1)
with parameters b << 1 is so close to a 1D map that it
can be treated as a 1D map with a proper parameter.
The proper parameter is determined by a and b in the
Hénon map (see Table I).

The paper is organized as follows. In Sec. II, we re-
view the basic properties of 1D unimodal maps and 2D
Hénon map. A technique called symbolic dynamics is
used. The dynamics for the strongly dissipative Hénon
map is studied in Sec. III. To demonstration the validity
of the method presented in Sec. III, the Rossler equa-
tions is investigated in Sec. IV. Finally, in Sec. V we
give our conclusion.

II. BASIC PROPERTIES
OF 1D UNIMODAL MAPS AND HENON MAP

To study the chaotic dynamics of a dynamical system,
it is widely accepted that a most useful way is to consider
the set of unstable periodic orbits embedded in them [10,
11]. It was shown that characteristic quantities of strange
attractors like Lyapunov exponents, entropies, dimen-
sions, and f(a) spectra can be directly related to proper-
ties of unstable periodic orbits. Until recently, symbolic
dynamics provides the most robust technique for the cal-
culation and classification of unstable periodic orbits in
a dynamical system [11-15].

To construct the symbolic dynamics of a dynamical
system, the determination of the partition and the or-
dering rules for the underling symbolic sequences is of
crucial importance. In the case of 1D maps, the parti-
tion is just the set of the critical points. For example, for
unimodal maps, a binary generating partition divides the
interval into two branches lying to the left and right of the
maximum, respectively. The right branch is assigned 0,
whereas the left branch is assigned 1. As a consequence,
nearly all trajectories are unambiguously encoded by in-
finite strings of bits S(z) = (s¢s152 - ), where s; is either
0 or 1 for unimodal maps [13]. As a matter of fact, the
ordering rules for these symbolic strings can be deduced
from the natural order of the number on a 1D interval.
Analytically, these ordering rules correspond to the or-
dering for the following “forward” variables

a(S(2)) = 3 m2~"Y, (5)

with

mod 2

0 for Zi._ (1-s)=0
i = =0 ’ 6
# { mod 2. ©)

1 for 2;=0(1 —s8;) =1,

After the kneading sequence K (i.e., the forward symbol
sequence from the maximum) is determined and «(K) is
calculated, from the above ordering rules the grammar
for a word allowed or forbidden is obtained, which is: a
word S(z) corresponds to a real trajectory if and only if
it satisfies

a(c™(S8(z))) < a(K), m=0,1,2,..., (7)
where o denotes the shift operator. Consequently, the
characteristic quantities of strange attractors of the map
for given parameters are completely determined.

For 2D maps, if one wants to split the full phase space
into parts, 1D curves should be introduced, which are
called partition lines. For the Hénon map, it has been
verified that a binary generating partition is convenient,
which is the set of all “primary” tangencies between sta-
ble and unstable manifolds [12]. Analogously, letters 0
and 1 are assigned for different parts. For the Hénon
map, z; depends not only on z;_;, but also on z;_3 so
that the backward sequences have to be considered. All
trajectories are then encoded by double-infinite strings of
bits S(z) =...8m ... 51559505152 .- Sn ..., Where s,, de-
notes the letter for nth image, s, the letter for the mth
preimage, each is either 0 or 1, the solid dot indicates
the “present” position. In order to extend the admissi-
bility conditions for the unimodal maps to this map, it
is convenient to introduce a “backward” variable defined
as

B(S(z)) = w2~ G+, (8)

=0
with

__JOfor Z§.=0 s; =1, mod 2
' 1 for Ei:o s; =0, mod 2.

For this 2D map, each primary tangency C asso-
ciates a double-infinite kneading sequence K (with the
first backward letter sz undetermined which may be 0
or 1) and two symmetrical points (a(K),B-(K)) and
(a(K),B+(K) = 1—B_(K)) in the symbolic plane corre-
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sponding to s = 0 and 1, respectively [14]. Analogously
to those in the unimodal maps, for all allowed points
(o, B) with B € [B_(K), B+(K)], a should be less than
a(K) and thus the pruning front is obtained by cutting
out rectangles {a, 8la > a(K), € [B-(K), B+(K)]} for
all P. The union of these rectangles gives the fundamen-
tally forbidden zone. Consequently, the grammar for a
word allowed or forbidden in this map can be expressed
as: A double-infinite word is admissible if and only if all
its shifts never fall into the fundamentally forbidden zone
[14]. It is clear that there are infinite kneading sequences
(corresponds to infinite primary tangencies) in a 2D map
to determine the grammar for a word allowed or forbid-
den, while there is only one kneading sequence in a 1D
map.

III. THE DYNAMICS
OF STRONGLY DISSIPATIVE HENON MAP

In this section, we concentrate on the strongly dissi-
pative Hénon map. We find that the topology of the
attractors of the Hénon map are so close to 1D that they
can be treated as that of a 1D map when the dissipation
is strong enough (b is sufficiently small). In Fig. 1, the
strange attractor for (a,b) = (1.4,0.05) is shown. The
hook clearly reveals that the map is two dimensional. In
the following, we will show that the periodic orbits em-
bedded in these chaotic attractors can be precisely deter-
mined with only one kneading sequence as in 1D maps.

We first construct the symbolic dynamics for the
Hénon map for (a,b) = (1.4, 0.05). The primary tangency
points (diamonds) are also shown in Fig. 1. Twenty
primary tangency points are found and the kneading se-
quences are computed. The symbolic plane is shown in
Fig. 2 where dots represent real orbits. It is remark-
able to find that all the forward parts of these kneading

0
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FIG. 2. The symbolic plane of the Hénon map for (a,b)=
(1.4, 0.05). The solid line is the pruning front. Points repre-
sent real orbits.

sequences are leading with the following 32 letters K
=01000101 000101000101 000101 010001. An unstable
periodic orbits with length n < 32 cannot tell the dif-
ference between these kneading sequences. Thus, for the
unstable periodic orbits with length n < 32, the gram-
mar is completely determined by the sequence Ky, that
is, a word S(z) corresponds to an unstable periodic orbit
of the Hénon map for (a,b) = (1.4,0.05) if and only if it
satisfies

(0™ (Storw(x))) < a(Ky),

where Sgorw () represents the forward part of S(z). This
is just the grammar for a unimodal map with a kneading
sequence Ky. Thus, we can say that the topology of
the attractor of the Hénon map for (a,b) = (1.4, 0.05)
can be approximately represented by that of a unimodal
map with a kneading sequence K¢. If the unimodal map
is taken as the Logistic map (3), the corresponding value
of u can be determined numerically, which is 1.4715. We
have obtained similar results for many other parameters.
In Table I, the kneading sequence Ky for (a,b) = (1.7,
0.01) is also presented. The corresponding values of p
for the Logistic map and the fractal dimensions are also
listed. The fractal dimensions are computed by a box-
counting technique with 10000 000 points.

The availability of the above grammar means that
we can calculate all the periodic orbits up to a definite
length. The results are shown in Table II for a = 1.4, b
= 0.05 and @ = 1.7, b = 0.01. The topological entropy
K can be calculated for all practical purposes from the
rate of increase of the number of allowed periodic points
belonging to orbits of length n. Denoting the number by
N(n), we have

m=0,1,2,..., (9)

K = lim 2N (10)

n— 00 n

We also have calculated the nth-order approximant of
the topological entropy defined by
K™ = M. (11)
n
For a = 1.4, b = 0.05, no orbit with odd period exists
except for the repetitions of lower cycles. The nth-order
approximant of the topological entropy for even length
appears to converge to a value about 0.26. For a = 1.7,
b = 0.01, the nth-order approximant of the topological
entropy also seems to converge.

The validity of the above discussion can be checked
directly by comparing the unstable periodic orbits from
the above grammar with those obtained by the following
two techniques. We have calculated all periodic orbits for
above two groups of parameters up to length 18 with a
Newton procedure. All the symbolic sequences for these
periodic orbits are exactly consistent with those calcu-
lated by the above grammar. Alternately, the periodic
orbits are computed up to length 21 by the techniques of
Biham and Wenzel [11]. The numbers of them also ex-
actly agree with those predicted by the above grammar.

From the above discussion, the topology of the attrac-
tor of the strongly dissipative Hénon map can be de-
termined by only one kneading sequence to very high
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TABLE II. The number of unstable periodic orbits and the nth-order approximant to the topo-
logical entropy in the Hénon map for n > 9 for a = 1.4, b = 0.05 and a = 1.7, b = 0.01. N.(n)
is the number of orbits of length n excluding cyclic permutations and repetitions of lower cycles,
N(n) is the total number of periodic orbits of length n and its divisors.

Period a=14,b=0.05 a=1.7,b=0.01
N.(n) N(n) K™ N.(n) N(n) K™

10 2 24 0.317805 9 104 0.464439
11 0 2 0.063013 16 178 0.471071
12 2 32 0.288811 21 272 0.467150
13 0 2 0.053319 34 444 0.468910
14 4 60 0.292453 48 704 0.468341
15 0 2 0.04621 72 1092 0.466384
16 5 96 0.285272 110 1792 0.468193
17 0 2 0.040773 166 2824 0.467406
18 8 148 0.277623 248 4552 0.467962
19 0 2 0.036481 380 7222 0.467625
20 11 248 0.275671 571 11528 0.467627
21 0 2 0.033007 874 18384 0.467583
22 18 400 0.272339 1326 29352 0.467596
23 0 2 0.030137 2042 46968 0.467705
24 25 640 0.269227

25 0 2 0.027726

26 40 1044 0.267339

27 0 2 0.025672

28 58 1688 0.265404

29 0 2 0.023902

30 90 2724 0.263662

accuracy. In practice, the kneading sequence can be cal-
culated from the preimage of the most upper left (the
point marked by A in the Fig. 1 which is the point with
the minimum x value of the attractor). This allows us
to give a very precise and not cumbersome estimate of
the characteristic quantities of strange attractors of the
strongly dissipative Hénon map.

We can give a geometric explanation for the above ob-
servation. For the convenience of the following discussion
in this paragraph, we first redefined the partition denoted
by P in this paragraph which is the first preimages of the
“primary” tangency points [12]. This partition also di-
vides the full phase space into two subsets as shown in
Fig. 3. Then the letters 0 and 1 are assigned for the
parts left or right to P. In 1987, Gu found that there
exists a set of manifolds, called most stable manifolds
(MSM’s) in 2D space [16, 17]. A MSM is a submanifold
in the basin of an attractor such that all the points on
this submanifold will converge to a single point with the
highest possible exponential rate (i.e., the most negative
Lyapunov exponent of the attractor). From this defini-
tion, all the (first) images of the points on a MSM must
fall on another MSM. Thus, if we take each MSM on a
subset as an element, the attractor in 2D space is cut
into elements and each element corresponds to a point
in a 1D interval. Consequently, the iteration relation be-
tween these elements forms a 1D map. In this paper, we
call this 1D map the geometric 1D Hénon map. In Fig.
3, the MSM’s for the Hénon map (dashed lines) are also
shown. In the following, we will see that this geometric
1D Hénon map is a unimodal one.

For these elements, we can define the ordering rules for
them in 2D space. We define right one of two elements

to be greater. Consequently, the monotonicity can also
be generated for this geometric 1D Hénon map. Numer-
ically, we find the part right to the P has a decreasing
monotonicity, whereas that left to the P possesses an in-
creasing monotonicity. Thus, the geometric 1D Hénon

-0.03
-0.6 0 0.6

FIG. 3. The strange attractor together with the most sta-
ble manifold’s (MSM’s) of the Hénon map for (a,b) = (1.4,
0.05). The heavy lines are the strange attractor. The dashed
lines are part of its MSM’s. The dotted line is the partition
P for our geometric description of the Hénon map, which also
divides the attractor into two parts marked by 0 and 1. The
MSM'’s cut the attractor in each subset into elements. All the
points on an elements share a forward symbolic sequence.
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map is a unimodal map with a partition P. From the
definition of MSM’s, the “primary” tangency points are
just the tangency points between the attractor and the
MSM’s. In the strongly dissipative Hénon map, these
“primary” tangency points are so close that they can be
approximately treated as a single point. Consequently,
this point is the maximum of these elements and P is the
critical point of this geometric 1D Hénon map.

In fact, the element has close relationship with the
symbolic sequence. Since all the points on an element
(which is part of an MSM) will converge to a single point,
all the points in phase space sharing the same forward se-
quence must fall on a same element. For the Hénon map

(2)
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FIG. 4. The symbolic plane of the Hénon map for
(a,b)= (1.4, 0.1). The diamonds represent two forbid-
den points (a (010°1000010°100), 3 (010°1000010°100)) and
(a (010°101010°101), 3 (010°101e010°101)); (b) an enlarged
part of the symbolic plane.

with sufficiently small b, we conjecture that all points on
an element (on or close to the attractors) sharing one
forward word. Numerically, this conjecture can be ver-
ified directly by iterating the map (1) from two initial
points on an element. Then each element defined above
corresponds to a forward symbolic sequence.

It is clear that the symbolic sequence for a trajectory in
this way is equal to that of the above 2D representation
with only one shift.

Now we consider the Hénon map of a little larger b
for (a,b) = (1.4, 0.1). The fractal dimension is 1.13+
0.02. In Fig. 4 the symbolic plane is shown. The for-
ward parts of all the 20 kneading sequences are lead-
ing with K¢y = 010000 000. It has been checked directly
with a Newton procedure that the unstable periodic or-

(2)

0.26
-3.5 -0.

w

0.2783

-3.3 X -3.29

FIG. 5. The 2D attractor of the Réssler band for parame-
ters ¢ = 2, d = 4 and a = 0.408; (b) an enlarged part of the
attractor.
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bits can be properly generated by the grammar (6) with
this Ky up to period 9. Deviations are found for period
14 orbits. Numerically one kneading sequence is deter-
mined with its forward part K4 = 0101°01000101 (see
the point A in Fig. 1). With this kneading sequence 19
unstable periodic orbits are allowed in which the words
010°100 and 010°101 are not found with a Newton pro-
cedure. From the symbolic plane shown in Fig. 4(b), the
two points (a (010°1000010°100), 3 (010°1000010°100))
and (o (010°101010°101), 8 (010°101010°101)) (dia-
monds) both fall into the forbidden zone.

IV. THE DYNAMICS
OF OTHER HIGH-DIMENSIONAL SYSTEMS

The above idea can be extended to many other sys-
tems. Here, we only take the Réssler’s band

T=-y—zx,
y=z+ay, (12)
z=b+z(x—c),

as an example. The 2D attractor is shown in Fig. 5 for
parameters ¢ = 2, d = 4, and a = 0.408. This attractor
is cut from the 3D flow on the half plane y = 0, z <
0. With a box-counting technique, the fractal dimension
for the 2D attractor is 1.035+ 0.016. The forward part of
a kneading sequence is determined numerically, which is
Ky = 0100100100100010000001001. With a Newton
procedure we have computed all unstable periodic orbits
up to length 12. The symbolic sequences for them are
in exact agreement with those predicted by the grammar
(6) with the above kneading sequence Kjy.

It should be noted that our idea can be also applied
to some dynamical systems with moderate dissipation in
some special cases. For the following 2D antisymmetrical
map [18]

Tpt1 = A:z:i + (1 - Az, + byn,

Yn+1 = Tn, (13)

we have found that the topologies for all the symmetry-
breaking attractors are close to 1D. The symmetry-
breaking attractor for A = 2.95 and b = 0.25 is shown
in Fig. 6. It has been found that all periodic orbits
up to length 8 are completely determined with only one
kneading sequence.

ya

e

X

-1 1
1 n
C

FIG. 6. The symmetry-breaking attractor of the 2D anti-
symmetrical map (12) for A = 2.95 and b = 0.25.

V. CONCLUSION

In this paper, we have shown that the 1 + e-
dimensional attractor of the strongly dissipative Hénon
map can be reduced to an effectively 1D one. Extending
this idea to many other systems explains the observations
that the topology for the attractors on proper Poincéare
sections for these systems can be described by a 1D map
rather well, and the numerical results that for maps of
the annulus of the family (4) there exists a value b, such
that for b < b. the topology is identical to that of the
circle map. An example for the Réssler band is also pre-
sented. With this idea we can give a very precise and not
too cumbersome estimate of the characteristic quantities
of strange attractors for strongly dissipative dynamical
systems. It should be noted that the attractors for dy-
namical systems with moderate dissipation can also be
interpreted as 1D in some special cases.
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